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Abstract  

Purpose:  To assess and compare the validity of internal and external Australian football (AF) 

training-load measures for predicting preseason variation of match-play exercise intensity 

(MEI sim/min) using a variable dose-response model. Methods: Twenty-on professional male 

AF players completed an 18-wk preseason macrocycle.  Preseason internal training load was 

quantified using session RPE (sRPE) and external load from satellite and accelerometer data.  

Using a training-impulse (TRIMPs) calculation, external load expressed in arbitrary units (a.u.) 

was represented as TRIMPsDist, TRIMPsHSDist, and TRIMPsPL.  Preseason training load and MEI 

sim/min data were applied to a variable dose-response model, which provided estimates of MEI 

sim/min. Model estimates of MEI sim/min were correlated with actual measures from each 

match-play drill performed during the preseason macrocycle. Magnitude-based inferences 

(effect size  90% confidence interval [CI]) were calculated to determine practical differences 

in the precision of MEI sim/min estimates using each of the internal- and external-load inputs. 

Results: Estimates of MEI sim/min demonstrated very large and large associations with actual 

MEI sim/min with models constructed from external and internal training inputs (r  90% CI; 

TRIMPsDist .73   .72–.74, TRIMPsPL .72  .71–.73, and sRPESkills .67  .56–.78). There were 

trivial differences in the precision of MEI sim/min estimates between models constructed from 

TRIMPsDist and TRIMPsPL
 and between internal input methods. Conclusions:  Variable dose-

response models from multiple training-load inputs can predict within-individual variation of 

MEI sim/min across an entire preseason macrocycle. Models informed by external training 

inputs (TRIMPsDist and TRIMPsPL) exhibited predictive power comparable to those of 

sRPESkills models.  

Keywords: internal training load, external training load, variable dose-response model 
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Introduction  

At present, little empirical knowledge specifically relating to the individual cumulative 

dose-response effects of pre-season training load on physical adaptation for professional 

Australian Footballers (AF) exists.  The practice of periodizing pre-season physical training 

loads has been embraced in professional AF, yet recommendations, at an individual level, for 

the optimal mesocycle duration and the training overload-recovery distribution within, remains 

unsubstantiated.  Mathematical models have been proposed to assist sports science and 

conditioning staff with prescribing the optimal distribution of training load within mesocycles 

of training1-3. The majority of investigations assessing the efficacy of using a mathematical 

model approach to optimally guide the periodicity of physical training and forecast future 

physical performance outcomes have used empiric training and performance data from athletes 

competing in individual, predominately endurance-based sports1,3-9. This is largely attributable 

to the fact that, although, field-test batteries assessing specific physical capacities are 

implemented in high performance team sports they are fatiguing, potentially interrupting the 

training process and compromising training quality.  Consequently, physical capacity 

assessments aren’t implemented in pre-season macrocycles with sufficient frequency to satisfy 

the recommended criteria to build robust models with strong predictive capability.  

From a physical perspective, one prerequisite aim of pre-season training in professional 

AF, is to enhance, at an individual level, the anaerobic and aerobic capacity of each player.  In 

support of this, Young et al.,10 found that yo-yoIR2 performance was significantly higher in 

starters compared to non-starters at the commencement of an Australian Football League 

(AFL) premiership season.  Studies in professional soccer 11-13and more recently in professional 

AF14, have demonstrated association between aerobic capacity, assessed via a yo-yo 

intermittent recovery (level 2) test (yo-yo IR2) and match exercise intensity (MEI/min)14.  

Specifically, in professional AF, a high MEI/min, quantified as distance covered  4.16m.s-
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1.min during match-play, has been shown to be indicator of an individual’s overall anaerobic 

and aerobic capacity.  During a pre-season macrocycle, professional AF teams frequently 

expose their players to competitive match-play, enabling MEI/min to be captured at a high 

frequency.  The presence of the relationship between MEI/min and yo-yo IR2 performance, 

suggests, MEI/min could be used as a more frequent alternate to assess anaerobic and aerobic 

capacity than the exhaustive yo-yo IR2 protocol.  Variable dose-response models, describing 

adaptations to training, mathematically relate the amount of training (system input) undertaken 

to change in performance (system output).  A prerequisite to construct dose-response models 

is a single measure to represent physical performance.  Importantly, to construct robust models 

with strong predictive power, the performance input variable needs to be captured at a high 

frequency.  The documented association between MEI/min and yo-yo IR2 performance, in 

professional AF, coupled with the ease at which MEI/min can be quantified during match-play 

training drills via micro-technology, makes it a suitable performance input for model 

construction.  The present study, using an established variable dose-response model will 

compare the within-individual predictive precision of model estimates of MEI sim/min with 

actual measures obtained across an entire pre-season macrocycle of training. This study will 

also ascertain whether differences in MEI sim/min precision accuracy exists between models 

constructed from internal or external load input methods.   

Methods 

Subjects 

Forty-five professional male AF athletes were recruited from the same team for the 

study, however exclusion criteria limited the training and performance data from 21 

participants (age: 22.3 ± 3.3 y, height: 188.3 ± 7.2 cm, and mass: 87.7 ±8.4 kg,) to be modeled 

in this study.  Ethical approval (Application ID 0000031146) was granted by the university 
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research committee and informed consent was obtained before the commencement of the 

research.  

Experimental Design 

A longitudinal post facto experimental design was used to compare actual MEI sim/min 

measures across an entire 18-week pre-season macrocycle, with predicted estimates derived 

from variable dose-response models constructed using internal and external quantitative input 

methods.   

Methodology 

Match-play exercise intensity performance 

From each 25-minute match-play training drill performed during the 2015-2016 pre-

season training macrocycle, MEI sim/min  (CV, 7.28  3.69%), was quantified for each player 

in accordance with previous protocols14. To reduce the likelihood of reporting artificially low 

match-play MEI sim/min, rest time and any stoppage time during the training drill were 

excluded from the analyses for each participant.  An individual player’s MEI sim/min was 

excluded from analysis if he was injured (but was participating in training) or injured in drill 

(but continued to play).  Further, MEI sim/min data were removed for analyses if the participant 

played a ‘foreign’ position or the training session was influenced by environmental conditions 

(i.e. rain).  To reduce the likelihood of reporting artificially high MEI sim/min, activity profiles 

were only accepted if the participant played 85% of the total drill time, conversely absolute 

variables were divided by the on-field active duration to prevent reporting low MEI sim/min. 

From each eligible match-play training drill MEI sim/min was converted into a percentage of 

pre-season peak performance so as the peak value forms the baseline for MEI sim/min 

performance across the pre-season macrocycle15.  
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Training load quantification  

All individual (n=4498) training sessions (i.e. all field based, skill, strength and 

conditioning, rehabilitative and active recovery sessions) were analyzed during the 

investigative pre-season macrocycle.  Individuals completed an average of 186.3  13.45 

individual training sessions during the pre-season.  A variety of valid external and internal 

methods (n=5) were used to quantify each individual pre-season training session, which acted 

as input data to construct variable dose-response models for each individual participant.  

External Load 

External load data for each pre-season skills and conditioning training session and 

match simulation training drill was captured using a portable global positioning system (GPS) 

micro technology device (Optimeye S5, Catapult Innovations, Melbourne, Australia).  Satellite 

data sampled at 10Hz provided measures of total distance and high speed running distance 

(quantified as distance covered  4.16m.s-1)14.  Player Load (PL), which is a vector of 

magnitude representing the square root of the sum of the instantaneous rate of change in 

acceleration in the x, y and z axes divided by 100 was obtained from the accelerometer sampling 

at 100Hz and has been reported to be reliable and valid16.  At the conclusion of each training 

session, data was downloaded and analyzed using the manufacturer specific software (Catapult 

Openfield v 11.1.2 software, Catapult Innovations, Melbourne, Australia).  Outcome variables 

to quantify external load were relative distance to specific velocity zones corresponding to 

(Zone 1 - 0-1.5m.s-1, Zone 2 - 1.5-3m.s-1, Zone 3 - 3-4.16m.s-1, Zone 4 - 4.16-5.5m.s-1, Zone 5 

-  5.5-7m.s-1, Zone 6 - >7m.s-1) and PL relative to specific intensity zones corresponding to 

(Zone 1 - 0-1 m.s-1, Zone 2 - 1-2 m.s-1, Zone 3 - 2-3 m.s-1, Zone 4 - 3-4 m.s-1, Zone 5 - 4-5 m.s-

1, Zone 6 >5 m.s-1)17. The validity and reliability of GPS devices and the metrics used in this 

study have been extensively reviewed elsewhere (for review16,18,19).  In brief, it appears that the 
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validity and reliability for measuring distance, PL and velocity is improved with a higher 

sampling frequency19-21. Pre-season external load was expressed in arbitrary units, using an 

adapted TRIMPs calculation, proposed by Edwards et al.,20.  Distance and PL accumulated in 

each of the six velocity and PL zones was multiplied by a corresponding exponentially 

weighted intensity coefficient, which placed greater weighting to higher intensities (Table 1).  

The multiplying coefficient factors used were provided in the manufacturer specific software 

(Catapult Sprint v 5.0.9 software, Catapult Innovations, Melbourne, Australia).   

Internal load  

The sRPE method was used to quantify internal load and represent the “global” (all 

field based, skill, strength and conditioning, rehabilitative and active recovery sessions) pre-

season training load21,22.  Subsequently, perception of effort (RPE) for the skills and 

conditioning component (sRPESkills) was differentiated from the total pre-season sRPE load.  

All participants were familiar with the RPE process for over 12 months leading up to the study 

period.   

Fitting the Model 

Individual pre-season training load and MEI sim/min  data for each player were applied 

to a 3-component variable dose-response model proposed by Busso et al.,1.  Mathematically, 

the variable dose-response model used has been previously described1. The set of individual 

parameters were determined by fitting the model performances with actual performance via 

successive minimizations of a recursive least squares algorithm23 using the generalized reduced 

gradient (GRC) nonlinear solver function in Microsoft Excel (Microsoft, Redman, USA). Five 

models were generated for each player, representing each of the training input methods and 

MEI sim/min.  
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Statistical Analyses 

Within-individual correlations between actual and predicted estimates of MEI sim/min 

were analyzed using Pearson’s correlation coefficient (r) and reported with 90% confidence 

intervals (CI).  The magnitude of the correlation between predicted and actual MEI sim/min 

was described as <0.1 trivial, 0.1-0.3 small, 0.3-0.5 moderate, 0.5-0.7 large, 0.7-0.9 very large 

and 0.9-1.0 almost perfect24. Magnitude based inferences (effect-size statistic  90% CI) were 

calculated to determine the practical differences between the precision of internal and external 

load measures to predict MEI sim/min. Differences were represented as ES ± 90% CI and 

classified as trivial (< 0.2), small (0.2 – 0.59) and moderate (0.6 – 1.19)24.  Where the 90% CI 

simultaneously overlapped the smallest important ES (0.2) the magnitude of the difference was 

considered “unclear”24.  The results are presented as mean  SD and differences as effect size 

 90% CI with a qualitative descriptor to represent the likelihood of exceeding the 0.2 

threshold24.   

Results 

Weekly mean values for training duration, distance, PL, and sRPE were 368  83 min, 

of 34843  5125 m, 3319  3121 a.u., and 4346  263.4 a.u., respectively.   

Modeled match simulation exercise intensity 

Fluctuations in MEI sim/min were observed across the entire pre-season macrocycle 

and presented as mean  SD (Fig 1). The average within-individual correlations between 

predicted and actual MEI sim/min for the various training input methods were (Training input, 

r mean  SD, qualitative descriptor), TRIMPsDist, 0.73  0.12, very large, TRIMPsPL, 0.72  

0.10, very large, TRIMPsHSDist, 0.70  0.14, very large, sRPE, 0.65  0.11 large, and sRPESkills, 

0.67  0.12, large, respectively.   Fig 2 shows an example of model simulation for one 

participant using in-season TRIMPsDist and MEI sim/min   data. Table 2 shows the precision of 
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actual MEI sim/min using the different internal and external training input methods. Accuracy 

of MEI sim/min estimates was greater for external training load inputs compared to each of the 

internal inputs. Trivial differences between precision of estimates of MEI sim/min were evident 

using either sRPE or sRPESkills.  The mean  SD of the difference between predicted and actual 

performance is presented in (Fig. 3, a-e).  

Discussion  

The main purpose of this study was to assess the level of association between modelled 

estimates and actual MEI sim/min performance measures obtained across an entire pre-season 

macrocycle. Recently, the adequacy of using a systems model approach to predict the within-

individual variation of match performance metrics across an in-season training macrocycle was 

investigated in professional AF17.  The in-season models were able to predict actual 

fluctuations in MEI sim/min with a high level of precision. The adequacy of using a model 

approach at an individual level during a pre-season macrocycle is unsubstantiated within the 

literature.  Due to the established association between yo-yo IR2 performance and MEI sim/min  

in professional AF and to also counteract the limitations associated with administering a high 

frequency (15-200 assessments) of maximal capacity tests during a pre-season macrocycle to 

build robust models9, the researchers used MEI sim/min  as a single representative of aerobic 

and anaerobic capacity, to act as a single performance input measure to a variable dose-

response model.  Very large and large magnitudes of associations were observed between 

model predicted and actual MEI sim/min using each of the training input methods. The strength 

of these associations is equivalent to those reported in previous in-season model work using 

the same professional AF cohort17.  Furthermore, the level of observed association between 

model and actual performance is comparable to those documented in model studies using 

empirical training and physical capacity performance data from highly trained endurance 
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athletes1,4-6,25.  For example, Wallace et.al.,5 demonstrated large correlations between each of 

the different internal and external methods used for quantifying training load and modelled 

running performance in trained triathletes.  

The majority of previous model research has failed to evaluate the influence that all of 

the training stimuli (i.e. internal vs external load, conditioning vs. strength load) has on 

performance responses1-6,8-10,25.  Similarly, to the in-season work by Graham et al.,17 sRPE was 

used in this study, as a quantitative training input representing the “global” pre-season training 

load (i.e. rehabilitative, strength and all skills and conditioning sessions). Despite sRPE 

representing the internal load of the entire pre-season training stimuli, differentiating the 

sRPESkills component from the total sRPE, so as to align with all the external load measures, 

didn’t lower the prediction accuracy of MEI sim/min.  These results, in combination with 

previous work17, suggest that, regardless of the training macrocycle being undertaken (i.e in-

season or pre-season), the skills and conditioning load in professional AF is relatively more 

important and specific to MEI/min performance than other training modalities prescribed and 

represented by the global sRPE method17. The comparable, small magnitude of difference in 

predictive power of MEI sim/min using internal sRPESkills load compared to each of the external 

load input methods in this study, aligns itself with previous findings17.  Anecdotally, training 

loads in professional AF are often planned and prescribed with biased consideration to external 

load parameters.  Importantly though, these results suggest that if applying a systems model 

approach to guide training periodicity with the intention of maximizing and potentially 

forecasting future MEI/min performance responses in professional AF, both external and 

internal training inputs methods have equivalent predictive power. From the perspective of 

selecting the most appropriate training input method this finding has obvious practical 

implication.  Quantifying training load using sRPE is an easily administered, inexpensive 
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method with capability of quantifying the entire training process in standardized arbitrary units 

irrespective of training modality and location.   

In high performance team sport settings, quantifying the pre-season external load using 

satellite and accelerometer data captured from portable micro technology devices is an 

established practice.  Velocity data provided by GPS devices, possess the advantage of being 

easily interpreted, adjustable in real-time and objectively conducive to coach, athlete 

performance feedback26, however, requires satellite lock in outdoor locations without overhead 

obstructions or interference, which may result in erroneous or missing data. When comparing 

the investigated external quantitative training input methods, TRIMPsPL derived from the 

accelerometer integrated and embedded within the GPS device, predicted MEI sim/min with 

the equivalent precision as TRIMPsDist.  The comparative ability to predict pre-season 

fluctuations in MEI sim/min using models informed by either TRIMPsDist or TRIMPsPL is in 

accord with related research17,27. This finding suggests that a relatively small proportion of the 

pre-season training load, involved impacts, collisions and/or multi planar movements.  

Consequently, foot strikes (vertical lane accelerations) and locomotor activity (forward 

acceleration) heavily contributed to and influenced the pre-season PL27. Derivatives of PL 

which weren’t examined in this study and potentially offer additional quantitative specificity 

for professional AF have been presented within the literature27.  For example, research has 

extracted PL activity below 2m. s-1, from total PL, which has been termed player load slow 

(PLSlow)27.  Studies have demonstrated that PLSlow has small associations with distance, 

indicating that it provides different information than PL27. Authors have suggested that this 

variable may better represent multi planar movements performed at relatively low speed (e.g. 

grappling).  Another derivative variable of PL is two-dimensional PL (PL2D).  This variable, 

like PLSlow, differentiates from PL, by just including the acceleration vectors from two planes 

(medio-lateral and anterior- posterior).  The exclusion of the vertical vector, potentially reduces 
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the influence of foot strikes and may provide insight into more non-locomotor load aspects 

applicable to professional AF27.  Potentially, derivatives of PL may quantify professional AF 

activity with greater specificity and reliability than satellite-based variables27.  Additionally, 

accelerometer data has the advantage of being captured independent of satellite, allowing 

external load from training sessions performed indoors or situations whereby satellite variables 

are unavailable to be recorded.  In comparison to satellite data, the increased continuity in data 

collection that PL offers is an important practical consideration, as large longitudinal training 

datasets, without interruption, are required to inform and construct robust variable dose-

response models.   

It is unlikely that a single external or internal load measure will describe all the variation 

in MEI sim/min across an entire pre-season macrocycle.  However, future model investigations 

in professional AF should ascertain whether larger magnitudes of association between actual 

and model estimates of MEI sim/min could be established using PLSlow , PL2D or other 

accelerometer derived metrics as external training inputs.  If future research demonstrates 

larger magnitudes of association (i.e enhanced prediction of MEI sim/min) using derivatives 

of PL, then accelerometer data should be used in preference to satellite data to inform variable 

dose-response models in professional AF.  Aside from assessing the adequacy of different 

training inputs, models utilizing different performance inputs, captured at a higher frequency 

than MEI sim/min, may demonstrate a smaller amount of unexplained variance, providing a 

better framework to understand and guide the training dose-response process.  Authors have 

reported to achieve stable fits and build robust models, between 15 and 200 assessments of the 

single measure representing the performance input for the model are required within a short 

period of time9. Although an average of 21  4 match-play drills were completed by the 

participants across the investigated pre-season macrocycle, exclusion criteria limited the 

amount of suitable MEI sim/min performance inputs to 12 for each player.  This is high in 
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comparison with previous modeling studies1,3,4,6, however, future model investigations in 

professional AF, due to the difficulty obtaining sufficient MEI sim/min measurements should 

focus on using alternate quantitative physical performance approaches to act as model inputs.  

For example, authors have suggested that parameters of the autonomic nervous system (ANS) 

collected from submaximal test protocols show potential to act as a suitable performance input 

candidates, while at the same time satisfying the criteria to build robust models25.  Recent 

model work using competitive swimmers, demonstrated the ability of both Bannisters original 

2-component model and Busso’s 3-component variable dose-response model to predict 

performance and parasympathetic activity (represented by the high frequency power (HF) 

component of heart rate variability) in response to training with the highest level of precision 

reported to date25.  In this study, the authors were able to obtain 30 consecutive HF power 

measures over a 15-week macrocycle of training25.  Numerous studies have reported on the 

strong correlations between parameters of the ANS and variations in performance in both cross-

sectional and longitudinal studies28,29. Heart rate response, perceptual and external load indices 

(i.e. integrated internal/external load approach) to controlled submaximal running protocols 

has documented support29, providing information of the physiological adaptive status of team 

sport athletes, and may have implication from a modelling perspective.  

The model predicative accuracy of MEI sim/min observed in this study is high, 

although, using alternate training and performance quantitative input approaches, captured at 

higher frequency to potentially reduce the amount of unexplained variance between actual and 

model estimates seems a worthwhile focus for future research.  However, the adaptive and 

performance responses to professional AF pre-season training is likely non-linear and 

influenced by a myriad of factors, including inter-individual variability in recovery potential, 

exercise capacity, non-training stress factors, and stress tolerance all of which are not accounted 

for by a variable dose -response model. This limitation further explains the discrepancies 
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between modeled and actual estimates of MEI sim/min using each of the investigated internal 

and external load inputs in this study.  Considering this, other complex predictive model 

methods such as, non-linear, multi-layer perception neural networks have been proposed and 

may be more appropriate in comparison to using variable dose-response models26.   

Practical Applications  

Variable dose-response models applied to pre-season quantitative internal and external 

training input methods may be an appropriate planning and forecasting tool to assist with 

periodicity of training and maximization of the adaptation response during a professional AF 

pre-season macrocycle.  As pre-season external and internal (sRPESkills) quantitative training 

load methods provide a comparable level of prediction, it appears systems modelling can be 

used without dependence on GPS micro technology devices.   

Conclusions 

Variable dose-response models constructed from multiple training load input methods, 

demonstrated a high level of ‘after the fact’ predictive power of the within-individual variation 

of MEI sim/min across an entire pre-season macrocycle.  Variable dose-response models using 

external training load inputs were able to predict MEI sim/min with a comparable precision to 

internal training input methods.  Future research should aim to assess the adequacy of using 

alternate physical performance quantitative approaches, and cross validate variable dose-

response model application in other AF teams and high-performance team sports. Finally, the 

prospective performance predictive capability (i.e. predictive power on ‘unseen’ MEI sim/min 

performance data) and the ecological validity of individual model estimates of fitness and 

fatigue should be examined.  
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Figure 1: Mean ± SD of the fluctuations in MEI sim/min across the 18-week pre-season 

macrocycle.  

 
*match-play exercise intensity (MEI sim/min).  
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Figure 2: Variable dose-response model simulation from one athlete constructed from pre-

season TRIMsDist and MEI sim/min data a predicted and actual MEI sim/min performance b 

Individual model estimates of fitness and fatigue c daily pre-season TRIMsDist 

 (a.u.) training load. 

 
*match-play exercise intensity (MEI sim/min). 
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Figure 3: Mean  SD of the difference between modelled and actual MEIsim.min-1 performance 

using a TRIMPsDist
 , b TRIMPsPL

 c TRIMPsHSDist d sRPE e sRPESkills training input methods 

respectively, during the 18-week pre-season macrocycle. 

 
*match-play exercise intensity (MEI sim/min) 
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Table 1 TRIMP calculations used to covert the pre-season external load into arbitrary units. 

 

 

TRIMPsDist    =  (Zone 1 Distance x 1) + (Zone 2 Distance x 1.2) +  

                                 (Zone 3 Distance x 1.5) + (Zone 4 Distance x 2.2) +  

                                 (Zone 5 Distance x 4.5) + (Zone 6 Distance x 9)             

 

 TRIMPsHSDist
  =  (Zone 4 Distance x 2.2) + (Zone 5 Distance x 4.5) +  

                                   (Zone 6 Distance x 9) 

 

 TRIMPsPL       =   (Zone 1 PL au x 1) + (Zone 2 PL au x 1.2) + (Zone 3 PL au 1.5) +  

                                (Zone 4 PL au x 2.2) + (Zone 5 PL au x 4.5) + (Zone 2 PL au x 9) 
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Table 2 Matrix of the difference between the retrospective precision of actual MEI sim/min 

using different internal and external training input methods  

 

Training Input 

Method 
TRIMPsDist TRIMPsPL TRIMPsHSDist sRPE 

 

TRIMPsPL 

 

-0.13  0.34  

unclear 

   

TRIMPsHSDist 
-0.30  0.33 

small  

-0.11  0.32  

unclear 
  

sRPE 
-0.62  0.32 

 moderate  

-0.47  0.34 

small  

-0.41  0.33  

small  
 

sRPESkills 
-0.500.34  

small  

-0.38  0.33  

small  

-0.29  0.30  

small  

-0.12  0.22 

trivial 

     

Differences in the retrospective precision of actual MEI sim/min using internal and external training input 

methods, represented as ES ±90% CI and classified as trivial (< 0.2), small (0.2 – 0.59) and moderate (0.6 – 1.19). 

Where the 90% CI simultaneously overlapped the smallest important ES (0.2) the magnitude of the difference 

was considered “unclear”. 

 denotes greater predictive accuracy of quantitative training input on y axis compared to x axis.  

 denotes lower predictive accuracy of quantitative training input on y axis compared to x axis.  
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